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Abstract

Steady-state, transient and angular characteristics are calculated by finite differences for a friction probe of
circular segmented shape. Diffusion in longitudinal and transversal directions is taken into account. In order to
resolve accurately the infinitely high current densities at the electrode edges an oblate spheroidal system of
coordinates is used. The approximate relationship for the Sherwood number Sh at Pe>1 was constructed by using
asymptotic and numerical results. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The main aim of this work is the theoretical determi-
nation of a transient probe current I(¢) after electrode
potential switch on. From this current the time con-
stant of a friction probe can be obtained [1,2]. Also, as
a result of the calculations a steady-state and angular
characteristic of the segmented probe can be found.

Very often circular electrodes are used as friction
probes. Such a type of probe is easy to fabricate by
gluing a platinum wire into a supporting material.
Theories for circular friction probes in a boundary
layer approach for steady-state and unsteady transient
characteristics are developed in Refs. [1,3]. Sobolik et
al. [3] calculated, using the boundary layer approach,
the angular characteristics of a three-segment circular
probe. A good review of various friction probes includ-
ing those of a circular shape can be found in Ref. [4].

* Corresponding author.

Small probes are preferable due to their good spatial
resolution and better frequency response. But for the
small probe when the Peclet number is relatively small
(Pe < 1000) the boundary layer approach fails. In this
case the terms in governing equations which describe
the longitudinal and lateral diffusion effects should be
taken into account. The three-dimensional problem of
mass transfer for circular probes have been evaluated
in Refs. [5—-7]. Phillips [5] presented an analytical treat-
ment of mass transfer for a disc-shaped film at low
Peclet numbers. He used the method of matched
asymptotic expansions. The Green function method
was used by Stone [6] for calculation of mass transfer
for circular and elliptic electrodes at 107> < Pe < 10°.

At finite Peclet numbers the investigation can only
be carried out numerically. This was first done by Py
and Gosse [7]. In Ref. [7] a simple Cartesian coordi-
nate system was used. But due to the infinitely large
current density at the electrode edges a special ellip-
soidal system of coordinates must be used for correct
calculations. Only in this coordinate system can the
edge effects be accurately resolved.
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Greek symbols

g, 1, @ oblate spheroidal coordinates
¢ electric potential [V]

Nomenclature

c concentration [mol m™']

Coo bulk concentration [mol m™!]

C dimensionless concentration c¢/cs,

d diameter of circular electrode

D diffusivity coefficient of the control ions [m? s™']
E strength of the electric field [V m™']

f angular characteristics of circular probe

1 total electrical current [A]

I; single segment current [A]

j flux density [mol m~2 s ']

¥ average mass flux on the probe [mol m=2 s™']
Ju dimensionless modified mass flux density defined in (11)
Pe Peclet number, Sd 2/D

Pe, Peclet number, SR 2/D

r radial coordinate [m]

R radius of the probe [m]

S velocity gradient on the wall [m s™']

Sh Sherwood number, jd/(Dcso)

t time [s]

tp dimensionless time, 7 - D/R2

t dimensionless time, 7 - S/Pe />

t dimensionless time, /7] Sh(co)/Sh.

u, v special coordinates defined in Eq. (6)

X,y horizontal coordinates [m]

y vertical coordinate [m]

0 angle between flow direction and the line of cut [°]

2. Oblate spheroidal system of coordinate and governing
equation

The governing differential equation is

ac dc
— +Sy— = DA ) > 0). 1
5 T35 ¢ (y>0) 1)
Here

92 92 92

ax2 T2 ez

is the Laplace operator.
Boundary conditions are:

c(0,x,y,2) = ¢

c(ta-xay’z) = Co (V x2 +y2 +Zz—>OO) (2)

ct,x,y,z) =0 y=0, Vx2+z2=r<R 3)
a
_0 y=0, r>R @)
ay

The applied potential is assumed high enough so that
the concentration at the electrode surface is zero. The
condition (4) shows that the mass flux vanishes on the
insulator surface.

Boundary conditions (2)—(4) generate an infinitely
high flux density j(x) at the edge of the electrode:
(x2+z%Y2=R. This divergence of j(x) can be obtained
in an analytical form for a particular case S=0. For
this case the steady-state solution of the problem (1)—
(4) is given by the well-known electric potential of a
charged disk. This solution has an inverse square root
behavior of the electric field £=—V® at the electrode
edge [1].
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Fig. 1. System of oblate spheroidal coordinates: 1—the probe;
2—the insulator.

Accurate calculation of the solution near the edge of
the electrode can be effectively performed by introdu-
cing a new oblate spheroidal coordinate system (Fig.
1) according to formula:

x =R/ +c2)(1 —12) cos ¢

z=R/(1 +a2)(1 —12) sin ¢ ®)
y = Ror.

After introducing new variables
oc=shu, 7= cos v 6)
the governing Eq. (1) takes the form

dC  Pe sh(2u) sin (2v)

ap 4 4
cosw(mii+ cosvi)
J chu du sin v dv
sin @ a
ch? usin 2y v (7
IR R B R
“ Jlchu auc ”au sinvavS Vav

J? 92
+——— tC
ch? u sin 2y 92 }

Jr) =

4.00
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Fig. 2. Steady-state mass flux density for z=0: 1—Pe=10;
2— Pe=10% 3—Pe=10%; solid line—calculated values, dashed
line—boundary layer approach.

The boundary conditions (2)—(4) become

CO,uv,0) =1, C(tp,00,v,0) =1

aC

Cltp0.0.0) = 0, <_> ()

=0

av v:n/2_

where J=sh?u+cos> v is the Jacobian of the coordi-
nate transformation (6).
The flux density is now determined by the formula:
on the electrode surface

IC 1 (ac) ) ©)

i (r/R)’ u

on the insulator

aC

— =0 v=mn/2.

ay

From (9) it follows, that at the edge of the circle,
where r— R, the flux density has singular behavior

const
/R2 — 2

The coordinate transformation also expands the edge
region, because here 1—(r/R)*>=12, and small steps in
T cause extremely small differences in (R—r).

(10)

3. Steady-state and transient characteristics of circular
probe

Eq. (7) with initial and boundary conditions (8) was
solved by the method of alternating directions [8]. The
calculations were done on the mesh with 200, 50, 36
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Fig. 3. Dimensionless steady-state mass transfer coefficient:
1—calculated values; 2—Phillips [5]; 3—Stone [6]; 4—bound-
ary layer approach.

(or 100, 40, 36) numbers of steps in the u-, v-, @-direc-
tions. The sizes of the Ar/R steps near the electrode
edge were 0.00137 and 0.0007. The modified mass flux
density

=V (E) (an
y=0

for various Peclet numbers is shown in Fig. 2. As the
Peclet number is decreasing the three-dimensional
character of the mass transfer becomes important in
the wider domain of the circular probe.

A steady-state mass transfer coefficient in a dimen-
sionless form is the Sherwood number Sh=jd/(Dcoo).
The complete mass transfer curve for a circular probe
is shown in Fig. 3. The solid line represents numerical
calculations done over the range of Peclet numbers
Pe=10"2-10*. The short dashed line 2 represents the
theoretical low Peclet number resulting from Phillips

[5]:

oy — 24— 0.11268Pe, %)
a1 —0.20281Pe?)’

(12)

In this formula it has been taken into account that in
the Sherwood and Peclet numbers [5,6] the character
scale is the radius of the probe. The calculated results
are remarkably accurate up to Peclet number Pe, < 1.
The dashed line 3 is the approximate expression pro-
posed by Stone [6] for Pe,> 1:

2
Sh= =(2.157Pe!* 4 3.55P¢ /). (13)
Y

The correlation (13) lies within 3% of the numerical
results [6] for Pe,=10 and within 7% at Pe,=5. The
dashed line 4 corresponds to the classic boundary layer
solution of Leveque. At large Peclet numbers
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Fig. 4. Time evolution of the relative mass transfer coefficient:
1—Pe=0; 2—Pe=1; 3—Pe=10; 4—Pe=10% 5—Pe=10%
6—Pe=10"

(Pe>10%) obtained values of mass transfer coefficient
Sh are in good agreement with the expression
Sh; =0.866Pe¢ ' and disagrees with the formula given
by Py and Gosse [7] (Sh=0.807Pe'/?). At small Pe <
10* the effects of longitudinal and lateral diffusion
result in considerable deviations from the Leveque
model. Calculated values of the Sherwood number can
be described by approximating the formula

Sh = 0.866Pe'/3 +3.235Pe~1/6 _ 1 .358 pe~!/3

+0.0771Pe 23, (14)

The correlation has an accuracy better than 1% for a
wide range of Peclet numbers (1 < Pe < 10%).

In Fig. 4 the transient process for stepwise switching
on the electrode potential is shown. The values of the
relative Sherwood number obtained in the boundary
layer approach [1] are expressed by approximating the
formula

Sht)) _ .. 4 177,5/3y1-0.3
Sy =[1— exp (—=4.176)]7°". (15)

The numerically obtained mass transfer coefficients
have more complex behavior and are Peclet number
dependent. The numerical results for the relative
Sherwood number can be represented as follows:

Sh(D) 1+ (bif +byi”) exp (—ai’)
Sh(co) [1— exp (—4.171'7)03

(16)

Here { = J11Sh(c0)/Shy = \/ip Pe' Sh(co)/Shy,
Sh(co)—steady-state value (14). The coefficients a, by,
b, obtained using the least square method are defined
by
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a = —0.0513 — 0.05428 In (Pe/10) + 0.03521 In? (Pe/10)

by = 1.125 — 0.307 log Pe — 0.063 log? Pe

(17)

by = —0.2403 — 0.4988 log (Pe/10) + 0.263 log? (Pe/10) — 0.0176 log® (Pe/10).

The proposed approximation of Sh(z) deviates from
numerically calculated values not more than 3% for Pe
>10 and less than 2% for Pe>100.

4. Angular characteristics for circular probe

For a double probe composed of two half-circular
electrodes (Fig. 5) the angular characteristics are
described by the function

5L(0)
/(0) 70) (18)
where 7;(0) is an electric current from an upper elec-
trode. This calculated numerical function is shown in
Fig. 6. The theoretical results of Refs. [1] and [7] are
also shown here. In Ref. [1] the angular function f{0)
was calculated in a boundary layer approach in a form

21/2 23
1(0) B@/3.12) J( sin @ ctgh + cos @)
/2
cos @ dg + 2%/ J cos pde | — 1. (19)

0

At large Peclet numbers (Pe>10% the calculated
values of f(0) are in a good agreement with formula
(19), the relative deviation is less than 1-2%.

For a triple probe which consists of three identical
segments (Fig. 5) the angular characteristics can be
described by the functions

1)

fi) ===

(20)

The total current of the triple probe I is the sum of 7;.

X x

Pa
5/
il i

Fig. 5. Segment circular probes.
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Fig. 6. Angular characteristics of twin electrode: 1—Pe=10%
2—Pe=10% 3—data [1]; 4—theory of Py and Gosse [7].

The current from the ith segment /; is obtained from
the expression

Piy1

R
I = —FDerr ‘ <%> do. (21)
: J \9y =0

Pi

The calculated angular characteristic f;(0) is shown in
Fig. 7. The values f;(0) obtained in the boundary layer
approach and experimentally measured functions from
Ref. [3] are also presented here. Some discrepancy
between calculated characteristics and experimental
data [3] can be explained by the nonideal geometric
form of the real triple-electrode probe used in the ex-
periments.
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Fig. 7. Comparison of calculated and experimental angular
functions: 1—Pe=10% 2—Pe=10*% 3—boundary layer
approach [3]; 4—experimental data [3].
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5. Conclusion

The boundary layer approach fails near the electrode
edges in the domain of several characteristic lengths
Ip = +4/D/S. For a circular probe this peripheral ring
domain occupies a relatively high part of the electrode
area. Here the mass flux density is large and is pro-
portional to an inverse square root of the distance
from the edge. As a result the steady-state mass trans-
fer at Peclet number Pe=10%-10* deviates considerably
by 5-30% from Leveque’s values.

The characteristic time needed for transient current
to achieve the steady-state value for Pe=10°-10° is
larger than the time predicted by the boundary layer
theory.

For Pe=10? the angular characteristic of the probe
also deviates from its asymptotic value by 10—-15%.
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